Advanced Crash Course in Supercomputing:

OLCF==.

DAk RIDGE LEADERSHIP COMPUTING FACILITY \.

Rebecca Hartman-Baker
Oak Ridge National Laboratory
hartmanbakrj@ornl.gov

© 2004-2011 Rebecca Hartman-Baker. Reproduction permitted for non-
commercial, educational use only.

%% U.S. DEPARTMENT OF

% OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

Outline

Parallelism
. Supercomputer Architecture
. Basic MPI
V. MPI Collectives
V. Performance Evaluation

> OJLCFeeee

l. PARALLELISM

Parallel Lines by Blondie. Source:
http://xponentialmusic.org/blogs/885mmmm/2007/10/09/403-blondie-hits-1-with-heart-of-glass/

3 OLCFeee

1. Parallelism

» Concepts of parallelization
* Serial vs. parallel
* Parallelization strategies

4 OLCFeeee

Parallelization Concepts

* When performing task, some subtasks depend on one
another, while others do not

» Example: Preparing dinner
— Salad prep independent of lasagna baking
— Lasagna must be assembled before baking

* Likewise, in solving scientific problems, some tasks
independent of one another

s OLCF eeee

Serial vs. Parallel

» Serial: tasks must be performed in sequence

* Parallel: tasks can be performed independently in any
order

T

Ts

S OAK

s OLCFeeee TSGR

Serial vs. Parallel: Example

* Example: Preparing dinner "

— Serial tasks: making sauce, @}
assembling lasagna, baking
lasagna; washing lettuce,
cutting vegetables,
assembling salad

— Parallel tasks: making 7
lasagna, making salad,
setting table

7 OLCFeeee

Serial vs. Parallel: Example

* Could have several
chefs, each performing
one parallel task

* This is concept behind
parallel computing

8 OLCFeeee

Parallel Algorithm Design: PCAM

* Partition: Decompose problem into fine-grained tasks to
maximize potential parallelism

» Communication: Determine communication pattern
among tasks

 Agglomeration: Combine into coarser-grained tasks, if
necessary, to reduce communication requirements or
other costs

» Mapping: Assign tasks to processors, subject to tradeoff
between communication cost and concurrency

(taken from Heath: Parallel Numerical Algorithms)
' OLCFeeee

Discussion: Jigsaw Puzzle*

 Suppose we want to do 5000 piece jigsaw puzzle

* Time for one person to
complete puzzle: n hours

 How can we decrease walltime
to completion?

* Thanks to Henry Neeman

10 JLCFeeee

Discussion: Jigsaw Puzzile

 Add another person at the
table

— Effect on wall time
— Communication
— Resource contention

 Add p people at the table
— Effect on wall time
— Communication
— Resource contention

1N JLCFeeee

Discussion: Jigsaw Puzzle

 What about: p people, p
tables, 5000/p pieces
each?

 What about: one person
works on river, one works
on sky, one works on
mountain, etc.?

2 JLCFeeee

Il. ARCHITECTURE

Image: Louvre Abu Dhabi — Abu Dhabi, UAE, designed by Jean Nouvel, from
http://www.inhabitat.com/2008/03/31/jean-nouvel-named-2008-pritzker-architecture-laureate/

BOLCFeeee

Il. Supercomputer Architecture

 What is a supercomputer?
 Conceptual overview of architecture

e
< <
Cray 1 -
(1976) Architecture of IBM Blue Gene -
»
System
P 64 cabinets
IBM Blue ~11immm Cabinet 65,536 nodes
M Q. 2 midolines (131,072 CPUs)
Gene e Node Card s o (32x32x64)
(2005) 2 Comhe Cara 16 compute cargs (2,048 CPUS) e
1O Card 0-2 1/O cards (8x8x16) el
e Chip 32 nodes 2.9/5.7 TFls i
2 FRU (field (64 CPUs) 512 GiB* DDR W Sq.R.
”‘g‘ess:,'s replaceable unit) (4x4x2) 15-20 KW MTBF 6.16 Days
Frr-splee 25mmx32mm 90/180 GF/s
kil 2 nodes (4 CPUs) 16 GIB* DDR
{compare this with 8 1983 [2x1x1)
Cray YMP/8 ot 2.7 GFis) 2x(2.8/5.6) GFls
2512 MiB* DDR
15W
Cray XT5
(2009)

4 JLCFeeee

What Is a Supercomputer?

* “The biggest, fastest computer right this minute.” -- Henry
Neeman

* Generally 100-10,000 times more powerful than PC

* This field of study known as supercomputing, high-
performance computing (HPC), or scientific computing

* Scientists use really big computers to solve really hard
problems

5 JLCFeeee

SMP Architecture

» Massive memory, shared by multiple processors

* Any processor can work on any task, no matter its location
In memory

* |deal for parallelization of sums, loops, etc.

16 JLCFeeee

Cluster Architecture

* CPUs on racks, do computations (fast)
» Communicate through myrinet connections (slow)

 Want to write programs that divide computations evenly but
minimize communication

17 JLCFeeee

State-of-the-Art Architectures

* Today, hybrid architectures gaining acceptance

* Multiple {quad, 8, 12}-core nodes, connected to other nodes
by (slow) interconnect

» Cores in node share memory (like small SMP machines)

 Machine appears to follow cluster architecture (with multi-
core nodes rather than single processors)

* To take advantage of all parallelism, use MPI (cluster) and
OpenMP (SMP) hybrid programming

8 JLCFeeee

11l. MPI

MPI also stands for Max Planck Institute for Psycholinguistics. Source: http://www.mpi.nl/WhatWeDo/istitute-pictures/building

v OLCFeeee ~RIDGE

11l. Basic MPI

* Introduction to MPI
» Parallel programming concepts
* The Six Necessary MPl Commands

» Example program

20 JLCFeeee

Introduction to MPI

« Stands for Message Passing Interface
* Industry standard for parallel programming (200+ page document)

* MPI implemented by many vendors; open source implementations
available too
— ChaMPlon-PRO, IBM, HP, Cray vendor implementations

— MPICH, LAM-MPI, OpenMPI (open source)

 MPI function library is used in writing C, C++, or Fortran programs
in HPC

* MPI-1 vs. MPI-2: MPI-2 has additional advanced functionality and
C++ bindings, but everything learned today applies to both
standards

2 JLCFeoeee

Parallelization Concepts

* Two primary programming paradigms:
— SPMD (single program, multiple data)
— MPMD (multiple programs, multiple data)

» MPI can be used for either paradigm

2 OJLCFeeee

SPMD vs. MPMD

» SPMD: Write single program that will perform same
operation on multiple sets of data

— Multiple chefs baking many lasagnas
— Rendering different frames of movie

* MPMD: Write different programs to perform different
operations on multiple sets of data

— Multiple chefs preparing four-course dinner
— Rendering different parts of movie frame

» Can also write hybrid program in which some processes
perform same task

B OLCFeeee

The Six Necessary MPI Commands

* int MPI Init(int *argc, char **argv)

e int MPI Finalize(void)

* int MPI Comm size(MPI Comm comm, int *size)
* int MPI Comm rank(MPI Comm comm, int *rank)

e int MPI Send(void *buf, int count,
MPI Datatype datatype, int dest, int tag,
MPI Comm comm)

* int MPI Recv(void *buf, int count,
MPI Datatype datatype, int source, int tag,
MPI Comm comm, MPI Status *status)

% OLCFeeee ~“RIDGE

Initiation and Termination

* MPT Init(int *argc, char **argv)
initiates MPI

— Place in body of code after variable declarations and before any
MPI commands

* MPI Finalize(void) shuts down MPI
— Place near end of code, after last MPl command

»s JLCFeeee

Environmental Inquiry

* MPT Comm size(MPI Comm comm, int
*size)
— Find out number of processes
— Allows flexibility in number of processes used in program

* MPT Comm rank(MPI Comm comm, int
*rank)

— Find out identifier of current process

— O0<rank<size-1

2% JLCFeeee

Message Passing: Send

* MPT Send(void *buf, int count,
MPI Datatype datatype, 1int dest, int
tag, MPI Comm comm)
— Send message of length count bytes and datatype datatype

contained in buf with tag tag to process number dest in
communicator comm

— E.g.MPI Send(&x, 1, MPI DOUBLE, manager,
me, MPI COMM WORLD)

27 JLCFeeee

Message Passing: Receive

* MPT Recv(void *buf, int count,
MPI Datatype datatype, 1int source,
int tag, MPI Comm comm, MPI Status
*status)
— Receive message of length count bytes and datatype

datatype with tag tag in buffer buf from process number
source in communicator comm and record status status

— E.g.MPI Recv(&x, 1, MPI DOUBLE, source,
source, MPI COMM WORLD, &status)

2% JLCFeeee

Message Passing

 \WARNING! Both standard send and receive functions are
blocking

 MPI Recv returns only after receive buffer contains
requested message

 MPI Send may or may not block until message received
(usually blocks)

* Must watch out for deadlock

29 JLCFeeee

Deadlocking Example (Always)

#include <mpi.h>
#include <stdio.h>
int main(int argc, char **argv) {
int me, np, q, sendto;
MPI Status status;
MPI Init(&argc, &argv);
MPI Comm size(MPI COMM WORLD, &np);
MPI Comm rank(MPI COMM WORLD, &me);
if (np%2==1) return 0;
if (me%2==1) {sendto = me-1;}
else {sendto = me+l;}
MPI Recv(&g, 1, MPI INT, sendto, sendto, MPI COMM WORLD,
&status);
MPI Send(&me, 1, MPI INT, sendto, me, MPI COMM WORLD);
printf(“Sent %d to proc %d, received %d from proc %d\n”,
me, sendto, g, sendto);
MPI Finalize();
return 0;

30 JLCF eeee

Deadlocking Example (Sometimes)

#include <mpi.h>
#include <stdio.h>
int main(int argc, char **argv) {
int me, np, q, sendto;
MPI Status status;
MPI Init(&argc, &argv);
MPI Comm size(MPI COMM WORLD, &np);
MPI Comm rank(MPI COMM WORLD, &me);
if (np%2==1) return 0;
if (me%2==1) {sendto = me-1;}
else {sendto = me+l;}
MPI Send(&me, 1, MPI INT, sendto, me, MPI COMM WORLD) ;
MPI Recv(&gq, 1, MPI INT, sendto, sendto, MPI COMM WORLD,
&status);
printf(“Sent %d to proc %d, received %d from proc %d\n”,
me, sendto, g, sendto);
MPI Finalize();
return 0;

31 JLCF eeee

Deadlocking Example (Safe)

}

#include <mpi.h>
#include <stdio.h>
int main(int argc, char **argv) {

int me, np, gq, sendto;

MPI Status status;

MPI Init(&argc, &argv);

MPI Comm size(MPI COMM WORLD, &np);

MPI Comm rank(MPI_COMM WORLD, &me);

if (np%2==1) return 0;

if (me%2==1) {sendto = me-1;}

else {sendto = me+l;}

if (me%2 == 0) {
MPI Send(&me, 1, MPI INT, sendto, me, MPI COMM WORLD);
MPI Recv(&q, 1, MPI INT, sendto, sendto, MPI COMM WORLD,

&status);
else {
MPI Recv(&q, 1, MPI INT, sendto, sendto, MPI COMM WORLD,
&status);

MPI Send(&me, 1, MPI INT, sendto, me, MPI COMM WORLD);

}

printf(“Sent %d to proc %d, received %d from proc %d\n”, me,
sendto, g, sendto);

MPI Finalize();

return 0;

2 OLCFeeee

Explanation: Always Deadlock
Example

* Logically incorrect
» Deadlock caused by blocking MPI Recvs

* All processes wait for corresponding MPI Sends to begin,
which never happens

B OLCFeeee

Explanation: Sometimes Deadlock
Example

* Logically correct

» Deadlock could be caused by MPT Sends competing for
buffer space

* Unsafe because depends on system resources

 Solutions:

— Reorder sends and receives, like safe example, having evens send
first and odds send second

— Use non-blocking sends and receives or other advanced functions
from MPI library (see MPI standard for details)

3 OLCFeeee

IV. MPI COLLECTIVES

“Collective Farm Harvest Festival” (1937) by Sergei Gerasimov. Source:
http://max.mmlc.northwestern.edu/~mdenner/Dramal/visualarts/neorealism/34harvest.html

s OLCFeeee ﬂ

MPI Collectives

« Communication involving group of processes

* Collective operations
— Broadcast
— Gather
— Scatter
— Reduce
— All-
— Barrier

36 JLCFeoeee

Broadcast

* Perhaps one message needs to be sent from manager to all
worker processes

* Could send individual messages
* Instead, use broadcast — more efficient, faster

int MPI Bcast(void buffer, int
count, MPI Datatype datatype, int
root, MPI Comm comm)

37 OLCF eeee

Gather

« All processes need to send same (similar) message to manager

» Could implement with each process calling MPI Send(...)
and manager looping through MPI Recv(...)

* Instead, use gather operation — more efficient, faster
» Messages concatenated in rank order

* int MPI Gather(void* sendbuf, int
sendcount, MPI Datatype sendtype, void*
recvbuf, int recvcount, MPI Datatype
recvtype, 1int root, MPI Comm comm)

* Note: recvcount = number of items received from each
process, not total

R OLCFeeee

Gather

» Maybe some processes need to send longer messages than
others

« Allow varying data count from each process with
MPI Gatherv(..)

* int MPI Gatherv(void* sendbuf, int
sendcount, MPI Datatype sendtype, void*
recvbuf, int *recvcounts, int *displs,
MPI Datatype recvtype, 1int root,

MPI Comm comm)

 recvcounts isarray; entry i in displs array specifies
displacement relative to recvbuf [0] at which to place data
from corresponding process number

9 OLCFeeee

Scatter

* Inverse of gather: split message into NP equal pieces, with ith
segment sent to ith process in group

* int MPI Scatter(void* sendbuf, int
sendcount, MPI Datatype sendtype, void*
recvbuf, int recvcount, MPI Datatype
recvtype, int root, MPI Comm comm)

« Send messages of varying sizes across processes in group:
MPI Scatterv(..)

* int MPI Scatterv(void* sendbuf, int
*sendcounts, int *displs, MPI datatype
sendtype, void* recvbuf, int recvcount,
MPI Datatype recvtype, 1int root,

MPI Comm comm)

0 JLCFeeee

Reduce

* Perhaps we need to do sum of many subsums owned by all
processors

* Perhaps we need to find maximum value of variable across
all processors

* Perform global reduce operation across all group members

* int MPI Reduce(void* sendbuf, void*
recvbuf, int count, MPI Datatype
datatype, MPI Op op, 1int root,

MPI Comm comm)

1 JLCFeeee

Reduce: Predefined Operations

MPI_Op | Meaning | Allowed Types

MPI_ MAX
MPI_MIN
MPI_ SUM
MPI_PROD
MPI_LAND
MPI_BAND
MPI_LOR
MPI_ BOR
MPI_LXOR
MPI_BXOR
MPI_ MAXLOC
MPI_ MINLOC

2 OJLCFeeee

Maximum
Minimum
Sum
Product
Logical and
Bitwise and
Logical or
Bitwise or
Logical xor
Bitwise xor
Maximum value and location

Minimum value and location

Integer, floating point

Integer, floating point

Integer, floating point, complex
Integer, floating point, complex
Integer, logical

Integer, logical

Integer, logical

Integer, logical

Integer, logical

Integer, logical

*

*

Reduce: Operations

e MPTI MAXLOC and MPI MINLOC
— Returns {max, min} and rank of first process with that value

— Use with special MPI pair datatype arguments:
« MPI FLOAT INT (floatand int)
« MPI DOUBLE INT (doubleand int)
« MPT LONG_INT (longand int)
« MPI 21INT (pairof int)

— See MPI standard for more details

* User-defined operations
— Use MPI Op create(...) o create new operations
— See MPI standard for more details

B3 OLCFeeee

All- Operations

» Sometimes, may want to have result of gather, scatter, or
reduce on all processes

» Gather operations

— int MPI Allgather(void* sendbuf, int
sendcount, MPI Datatype sendtype, void*
recvbuf, int recvcount, MPI Datatype
recvtype, MPI Comm comm)

— int MPI Allgatherv(void* sendbuf, int
sendcount, MPI Datatype sendtype, void*
recvbuf, int *recvcounts, int *displs,
MPI Datatype recvtype, MPI Comm comm)

4 JLCFeeee

All-to-All Scatter/Gather

* Extension of A1l1gather in which each process sends
distinct data to each receiver

* Block j from process i is received by process j into ith
block of recvbuf
int MPI Alltoall(void sendbuf, int

sendcount, MPI Datatype sendtype,
vold* recvbuf, i1int recvcount,

MPI Datatype recvtype, MPI Comm
comm)

* Also corresponding A11toA1l1lv function available

45 JLCFeeee

All-Reduce

» Same as MPI Reduce except result appears on all
processes

* int MPI Allreduce(void* sendbuf,

void* recvbuf, int count,
MPI Datatype datatype, MPI Op op,

MPI Comm comm)

46 JLCFeeee

Barrier

* |n algorithm, may need to synchronize processes
» Barrier blocks until all group members have called it

*int MPI Barrier (MPI Comm comm)

71 OJLCFeeee

Source: http://img.domaintools.com/blog/dt-improved-performance.jpg

V. PERFORMANCE
EVALUATION

8 OJLCFeee

V. Performance Evaluation
» Efficiency

* Scalability
* Performance Modeling

19 JLCFeeee

Efficiency

* How well does parallel program perform compared to serial
program (or parallel program on 1 processor)?

VA
£, =—
Y NT,
» [= efficiency, N = # processors, T, = time for p processors

5o JLCF eoeee

Efficiency

* ldeally, £, = I; realistically, £, < 1.

» Factors influencing efficiency
— Load balance (evenly distribute work for better efficiency)
— Concurrency (minimize idle time on all processors)

— Overhead (minimize work that serial computation would not do,
e.g. communication)

st OLCF eeee

Scalability: Speedup

* How well does parallel program take advantage of additional
processors?

7’
S, =—
Ly
* §'=speedup, N = # processors, 7 = time for p processors

2 OLCFeeee

Determining Scalability of Program

* How to measure scalability
— Fixed problem size, measure T, for different N's
— Increase problem size proportional to NV, compare 7,

* Repeat performance runs at least 3 times for each N (ideally
>5 times)

* Plot on log-log graph; slope of line determines scalability

S UOLCFeeee

OLCF==.

DAk RIDGE LEADERSHIP COMPUTING FACILITY \.

U.S. DEPARTMENT OF

ENERGY % 0 RipGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

Performance Evaluation

» Create performance model
ommunication omputation erial

 Examine parallel algorithm and figure out which parts fit in
each category

* Perform least-squares fit with scalability data

s OLCF eeee

Benchmarking and Performance:
Example

 Example of real program: three-tier parallel program from
my dissertation

* The problem: Compute diffusion function

— Compute f'matrices, each matrix and each matrix entry
iIndependent of all others

— Perform matrix-vector multiply for each matrix and take norm of
result

— Take weighted average of fresults

s6e QLCF eoee

Example: Schematic Overview of
Algorithm

DEM + local
- . - method, e.g.
[Optlmlzatlon] e
BFGS

|
. . dependent on
Diffusion diffasion
parameter
A

~——

~—
Funcnon Funcnon Function # pts in
Evaluatlo Evaluatlon **+ |Evaluation e

stencil

atrix atrix
entry | | entry
Quad- Quad-

rature rature

matrix
entries

sTOLCFeeee

Example: Categorize Algorithm

Communication

Computation

Serial (Idle)

Manager: send information
about computation to A/l

Workers: Send matrix
entries to Drivers

Drivers: Send results to
manager

All: Compute matrix
entries using quadrature

Drivers: Compute matrix
/vector multiply and norm

Manager: Initialize

(Worker processes are idle)

Compute final function
evaluation (All processes
except Manager are idle)

s JLCFeee

e 3UWI|

Example: Performance Evaluation

_ ommunication omputation erial
7y =1y + 7y + 7y

For three-tier algorithm,

=N+ d-1)t,+ AN, f)l g + 7

1nit

* N =# processors * ¢, = message startup time

* d =#drivers ¢t +=avg time to compute one entry

quad
* 1= stencil size . = time spent by manager in serial

1n1t
* P(N, f) = max # entries
computed by 1 proc

9 JLCFeeee

Example: Performance Evaluation

 Using least squares solve, we obtain
7, =N+ d-1)3.81077 x107 + AV, /)10.3311+ 3.91500 sec

10°

Wall Clack Time per Function Evaluation (Seconds)

10' : ‘
18 3z 84 128 D56

Number of Procassors
600 JLCFeeee

Bibliography/Resources: Programming
Concepts

* Heath, Michael T. (2010) Notes for CS554: Parallel
Numerical Algorithms,
http://www.cse.illinois.edu/courses/cs554/notes/
index.html

» MPI Deadlock and Suggestions
http://www.ncsa.uiuc.edu/Userlnfo/Resources/Hardware/
CommonDoc/MessPass/MP|Deadlock.html

6l LCF eoeee

Bibliography/Resources: MPI/ MPI
Collectives

* Snir, Marc, Steve W. Otto, Steven Huss-Lederman,
David W. Walker, and Jack Dongarra. (1996) MPI:The
Complete Reference. Cambridge, MA: MIT Press. (also
available at
http://www.netlib.org/utk/papers/mpi-book/mpi-book.html)

» MPICH Documentation
http://www-unix.mcs.anl.gov/mpi/mpich/

* C, C++, and FORTRAN bindings for MPI-1.2
http://www.lam-mpi.org/tutorials/bindings/

2 JLCFeeee

Bibliography/Resources: MPI/ MPI
Collectives

» Message Passing Interface (MPI) Tutorial
https://computing.linl.gov/tutorials/mpi/

* MPI Standard at MPI Forum

— MPI 1.1;
http://lwww.mpi-forum.qgov/docs/mpi-11-html/mpi-report.html#Node0

— MPI-2;
http://www.mpi-forum.org/docs/mpi-20-html/mpi2-
report.htim#Node(

3 JLCFeeee

Bibliography/Resources:
Benchmarking and Performance

 Heath, Michael T. (2010) Notes for CS554: Parallel
Numerical Algorithms,
http://www.cse.illinois.edu/courses/cs554/notes/index.html

 Hartman-Baker, Rebecca J. (2005) The Diffusion Equation
Method for Global Optimization and lts Application to
Magnetotelluric Geoprospecting, Department of Computer
Science, University of lllinois at Urbana-Champaign,

http://www.cs.uiuc.edu/research/techreports.php?
report=UIUCDCS-R-2005-2578

64 JLCFeoeee

